Saturday, April 23, 2022

Things to know about Horizontal Laminar Flow Hood

A complete laminar hood setup describes the airflow pattern. If you're setting up a lab, you may need to adjust the airflow in the space. This mobility is critical in a cleanroom environment as well. The experiment may fail if the airflow direction is not accurate during testing. Laminar flow hoods are used in most labs because of this.

A horizontal or vertical setup is an essential sort of flow hood. The setup aids in ensuring that the airflow remains in the proper direction. Laminar hoods are required if you wish to control airflow in a specific direction. Laminar flow hoods are used in cleanrooms when essential procedures are being carried out.

There Are So Many Reasons Why The Hood Is Very Helpful.

Horizontal Laminar Flow Hood

The purpose of the hood in the workstation is more like this. Bench configuration is referred to as the "hood" in this context. The workstations on the bench may be divided into many sections. Lower workstations and higher workstations are the two primary divisions of this space. It's easy to keep things moving, which makes for a cleaner working atmosphere.

Using the Laminar Flow Hood in Action

Sterilized airflow is the primary function of laminar hoods. The airflow's direction is also critical. The equipment will aid in the creation of the air streams. The air streams are produced using specialized HEPA filter devices. The airstream continues to flow in the same direction.

Units That Are Well-Designed

There is no flaw in the hood's construction. The hood's quality may be determined by the engineering methods it employs to guide the airflow. An effective air handling system is a must.

Maintenance Is Easy To Do.

Your workstation's airflow hood device has to be easy to use. In addition, it should be simple to care for and clean. There shouldn't be too many moving parts in the filter. Cleaning the filter unit regularly may be difficult if the design is complicated.

HEPA Filtration Systems

A high-quality HEPA filter is incorporated into the Horizontal Laminar Flow Hood unit. A 95% success rate is guaranteed with this filter unit. It also aids in air purification by trapping many kinds of bacteria. Quality and certified HEPA filters should be placed in the machine you choose.

The Importance of Knowing Your Analytical Lab Equipment

Pharmaceutical, chemical, oil refinery, clinical, and food processing labs all use various types of analytical equipment. Using these tools, the composition and analysis of materials may be determined. There are several kinds of analytical instruments, including refracting meters, spectrophotometers and electrochemical instruments, and titrators, fiberscopes and demagnetizers.

It is possible to modify settings and perform resolution, sampling, analysis and collecting in a more efficient manner with the help of scientific equipment and computers. Global demand for scientific equipment is projected to rise as a result.

Apps for Doing Analytical Tests

Analytical Lab Equipment

 

Analytical lab tools are utilized in various settings, from the laboratory to the field. The following are only a few examples, although there are many more.

  • Tests in the Natural Setting
  • Analysis of Clinical Data
  • Investigative Science: Forensics
  • Analysis of Food and Beverage Products
  • Research and development in the field of materials
  • The study of pharmaceuticals
  • Testing of petrochemicals
  • Research in the fields of biology and chemistry

What to Keep In Mind While Purchasing Analytical Instruments for Your Lab

Analytical tools differ in the number of analyses they can perform. As a result, it is critical to know the most relevant data that may be gleaned through laboratory examination. Following the selection of a suitable instrument, it is necessary to take into account the following aspects:

  • Accuracy
  • Sensitivity
  • Signal/Noise
  • Resolution
  • Portability
  • The ability to test several variables at once

Analytical instrumentation has advanced tremendously in the last several years. Using personal computers and microcontrollers in analytical devices has become increasingly common in the current age. A substantial number of these devices also serve a crucial role in environmental pollution management and monitoring. Suppliers, exporters and manufacturers of analytical equipment should be trusted.

Conclusion

Analytical tools are becoming more popular due to several variables. These factors contribute to the rise in life expectancy: population expansion, an ageing population, an increase in disposable income, and an increase in chronic illness rates. As more US-based life sciences companies want to expand their regional presence in South America and Africa, prominent players in the industry will have more investment and growth prospects in the coming years. Analytical Lab Equipment are expected to rise in value due to mergers, acquisitions, and divestitures.

Friday, April 22, 2022

Why is a UPS required for a pharmacy refrigerator?

Concerns over vaccine cold chain sustainability are once again being raised after three Covid-19 vaccines were licensed in the USA, and two more are expected to be approved soon.

In A Pharmaceutical Refrigerator, Why Is It Necessary To Have A UPS?

pharmacy refrigerator

The UPS (uninterruptible power supply) may be used for various purposes beyond those often connected with backup power requirements. Power outages in pharmacy refrigerators and laboratory freezers, on the other hand, restrict medical professionals from opening the refrigerator and retrieving vaccines, which may lead to data loss or other operational concerns. Medicine fridges may keep their temperature for up to four hours after a power outage, as long as the door isn't opened.

As a result of recent news about the development of a Coronavirus vaccine, pharmaceutical refrigerators have come to public attention. It's important to point out the fact that many medications and medical supplies must be stored at a specific temperature range (usually between 2 and 8 degrees Celsius) to ensure their safety and efficacy (35.6F to 46.4F). After 8 degrees Celsius, the NHS Green Book declares that the "cold chain" has been broken, and the contents of the refrigerator must be treated as damaged or destroyed as necessary.

What UPS protects data?

Vaccines must be stored according to tight requirements, which means that a medical fridge outage may not only be an expensive annoyance, but it may also violate laws. For the CDC (Centre of disease prevention), the minimal criteria for acceptable refrigeration conditions:

"Measures have been made to limit the likelihood of an electrical supply being accidentally interrupted."

As previously stated, switchless connectors and unambiguous labelling are common approaches. Although reducing the risk of human mistakes, a switchless socket does not offer an additional source of power to the fridge in the event of a mains power outage.

Conclusion

It is recommended that vaccines and medications stored in laboratory freezers be maintained at a temperature of –15 to 50 degrees Celsius to ensure optimal shelf life. The first Covid-19 vaccination requires a temperature of -70 degrees Celsius (-94F) and can only be thawed four times before it degrades and denatures. Unlike other frozen vaccines, it has a five-day shelf life after thawing.

Tuesday, April 19, 2022

How to Specify an Ultra-Low Freezer for Lab

To more complex things like cells and tissues, biomolecules such as oligonucleotides and proteins have thermal sensitivity. Ultralow temperature (ULT) freezers must be utilized to keep these materials at -80°C so that they may be examined and characterized. Cryogenic freezers, which can maintain temperatures as low as -150°C, may be used to retain samples for long periods in some instances.

Ultralow Freezer

There are a slew of considerations to be made while making your final decision on a ULT freezer

  • There are a few things to think about before investing in ULT freezers. In addition to the price, consider the freezer's size, footprint, and energy efficiency.
  • The capacity of the ULT freezer is critical because it affects how many biological materials may be stored in the Laboratory Freezer. The larger the freezer's capacity, the more costly it will be to buy and operate.
  • It is preferred if the ULT freezer takes up as little space as feasible, enabling the lab to utilize more of the available space for other purposes. ULT freezers that are upright rather than chest-shaped take up less shelf space.
  • ULT freezers must keep a stable temperature because biological samples, such as patient tissue, are critical and challenging to obtain.
  • The following components make up the user interface: Wi-Fi-enabled ULT freezers of modern models may be controlled from afar. This function might be helpful, for example, if you need to monitor the freezer temperature outside of regular working hours or if the pandemic prohibits you from going to the lab in person.

Because of technology developments, ULT freezers have improved

Biotechnology research relies heavily on the use of Ultralow Freezer. Consequently, their designs have become more imaginative to enhance their reliability and sample integrity while simultaneously reducing operating expenses and enhancing ergonomics.

Manufacturers are upgrading their designs to lower their carbon footprints as consumers become more aware of the carbon footprints generated by research institutions. Some compressors are also equipped with learning algorithms to optimize their energy consumption, making them even more energy-efficient as they become more common.

To reduce the formation of difficult-to-remove frost and ice, manufacturers have created new materials with anti-frost properties that improve temperature uniformity while also making maintenance easier.

Wednesday, April 6, 2022

How to Properly Calibrate Your Moisture Analyzers

Laboratory-scale To ensure that products meet federal and industry regulations, the moisture content is measured using halogen or other infrared heaters. Like any different exact analytical scale or balance, a moisture analyzer must be accurate to function correctly. To ensure the accuracy of moisture analyzers, two independent calibration processes must be completed: one to ensure temperature and another to ensure weight. If you want to know how to calibrate your moisture balance accurately, keep reading!

Why Do Moisture Analyzers Need to Be Calibrated?

Only a few interruptions may substantially impact the overall accuracy of a moisture balance. The gravitational pull in various locations of the globe necessitates that newly acquired analyzers be calibrated on the spot before they can be utilized. When moisture analyzers are being utilized in the lab or at a different location, even if it's only in a new place of work, changes in ambient conditions might impact accuracy. The workspace should be adequately soundproofed and heated or cooled to prevent noise and temperature fluctuations brought on by moving carts over the floor.

It is necessary to calibrate the weighing system

It is necessary to do external calibration on moisture analyzers to be as accurate as possible. These adjustments are made by combining a particular moisture balance test with predetermined adjustment weights like 50 grammes. The operating instructions accompanying the devices provide information on how to calibrate different models of moisture analyzers. The calibration weight is placed on the sample pan once the device has been set to suit the importance of the pan. For example, if the moisture analyzer shows an incorrect number for the real weight, the analyzer will automatically correct itself, and the exercise will be completed without additional input.

Temperature Testing And Determination

Heating systems may be calibrated using temperature calibration kits, which can be purchased separately. However, your moisture analyzer must be cooled down for three hours before any tests can be carried out. Insert the temperature probe as close to the sensor as possible, following the instructions in the instruction manual.

In comparison to the weight calibration technique, the temperature checks are more time consuming and require the use of two independent pounds. A moisture balance can only offer accurate findings if it is calibrated regularly in your laboratory. All laboratory employees must be aware of the calibration procedure and its timeframes.

How to Achieve Precision Scale And Balance

In academic and industrial research and quality control labs, an analytical balance is precision equipment that needs considerably more care and attention than the usual industrial scales and balances. There are many analytical balances on the market, and each one has its own unique set of specifications. So lab workers should be informed of how and when to use these instruments to ensure that equipment accuracy is maintained and prolong the lifespan of these instruments to the greatest extent feasible. Here are a few basic guidelines to keep in mind. There are times when the balancing operations manual is the only source of information.

Construction of an Analytical Equilibrium

The precision scale should be packaged on a flat, level surface that is free of severe heat, temperature variations, direct sunlight, draughts, high humidity, mist, dust and vibration. Accuracy may be affected by any or all of these variables. After that, open the balance and follow the steps provided to set it up.

A Balance Analyzer Is Required

Kern precision scales and analytical balances employ moulded plastic housings to prevent draughts from interfering with the accuracy of their measurements. After the samples are placed on the weighing plate, and the housing door is closed, you should wait approximately three seconds before taking a reading. Avoid tampering with the balance during weighing processes if at all feasible.

Checking Your Results Using an Analytical Balance

Before using a Precision Scale and Balance, it must be calibrated. The equipment may need to be recalibrated if it has been moved to a new location or subjected to significant changes in the temperature, humidity, or other environmental factors.

Keep everything in its proper place!

A thoroughly cleansed analytical balance is required for reliable results. It should be disconnected from the power supply as soon as feasible, and any spilled samples should be cleaned up immediately. Use a soft brush or a vacuum to remove any leftover residue. Wet towels soaked in mild soap should be used to clean surfaces. Precautions must be made to prevent liquid from entering the device. Completely dry the item with a fresh towel.

How Does a Nitrogen Desiccator Work in Lab?

As nitrogen is inert primarily (it does not react with stored items nor does it transmit moisture), it is the most often used medium for contaminant-free storage. It can be separated and purified at a cheap cost.

What Is essential?

There must be a proper flow of nitrogen in desiccator cabinets so that all moisture and contamination-containing air is removed. Because nitrogen has lower specific gravity than air, the heavier air is purged from the bottom region of the desiccator by introducing nitrogen into the top area.

Desiccators Not Maintained?

If a desiccator is not adequately bled and maintained, it might result in catastrophic failure. Moisture may permeate a desiccator's molecular structure, needing baking or vacuum processing to preserve the items being stored.

A Desiccator May Be Put To Use In Two Ways: As A Drying Device And As A Storage Device

There are two ways to utilize this airtight container. A desiccator's interior may be dehumidified first to prevent moisture particles from damaging moisture-sensitive goods like electronics and chemical samples that may react when exposed to moisture. Maintaining a stable humidity level while protecting biological and carbon dating materials from contamination is the second technique.

Desiccators for Dry Boxes

A wide range of manufacturing processes, from semiconductors to biopharmaceuticals to medical devices, are used in labs to meet these and other sectors' demands. Our desiccators are designed to reduce the relative humidity (RH) in a cabinet to 0% so that moisture cannot affect the sample that is being stored inside.

Relative humidity of 0 percent may be achieved by introducing Nitrogen (N2) into the chamber. When oxidation is not necessary, nitrogen is utilized as a replacement for air. It is feasible to separate and purify nitrogen cheaply since it does not react with stored chemicals.

Last Words

A desiccator may employ silica gel cartridges as alternative desiccants in the form of silica gel cartridges. You can recall finding little packets of beads hidden within a new pair of shoes in the past. As opposed to silica gel cartridges, silica gel packets have a more manageable size. Use these cartridges to keep samples dry since they remove moisture from the chamber.